Giant photoeffect in proton transport through graphene membranes
نویسندگان
چکیده
منابع مشابه
Analysis of Time-Varying, Stochastic Gas Transport through Graphene Membranes.
Molecular transport measurements through isolated nanopores can greatly inform our understanding of how such systems can select for molecular size and shape. In this work, we present a detailed analysis of experimental gas permeation data through single layer graphene membranes under batch depletion conditions parametric in starting pressure for He, H2, Ne, and CO2 between 100 and 670 kPa. We s...
متن کاملElectro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes
The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows ...
متن کاملSelective Mass Transport of CO2 Containing Mixtures through Zeolite Membranes
In this work, the main aspects regarding the permeation of mixtures containing CO2 and permanent gases such as H2 , N2 and CH4 through zeolite membranes have been investigated, focusing on the description of the mass transport mechanisms taking place inside the pores. First, a brief overview about the performance of the main zeolite membranes used in gas separation (e.g. DDR, CHA, AEI, FAU, etc...
متن کاملSelective gas transport through few-layered graphene and graphene oxide membranes.
Graphene is a distinct two-dimensional material that offers a wide range of opportunities for membrane applications because of ultimate thinness, flexibility, chemical stability, and mechanical strength. We demonstrate that few- and several-layered graphene and graphene oxide (GO) sheets can be engineered to exhibit the desired gas separation characteristics. Selective gas diffusion can be achi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Nanotechnology
سال: 2018
ISSN: 1748-3387,1748-3395
DOI: 10.1038/s41565-017-0051-5